Kalman Filter Algorithm for Adaptive Digital Predistortion
نویسندگان
چکیده
This paper introduces a recursive algorithm of Kalman filter for digital predistorter parameters extraction based on memory polynomials predistorter model. The predistorter model is firstly formulated as linear regression expression. Then we derive the state-space equation of the model and attain the steps of the algorithm. Finally, the accuracy and stability of the algorithm is proved by simulation. Key words—digital predistorter, memory-polynomials model, Kalman filter, state-space equation, LMS
منابع مشابه
Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملLinearization of Time-varying High-power Amplifier using Adaptive Digital Predistorter
An efficient adaptive predistortion technique is proposed to compensate linear or nonlinear distortions caused by a high-power amplifier (HPA) with memory in OFDM communication systems. Previous adaptive predistortion techniques, based on Volterra series, are not suitable for real-time implementation due to high computational burden and slow convergence rate. In the proposed approach, the memor...
متن کاملA New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کامل